
OMINO PYTHON for After Effects
from omino.com, 2010-2012

Omino Python for After Effects

1

Contents

...Introduction 3

...Installation & Licensing 4

...Quick Start! Instant Gratification 5

...The Workflow 6

...A Script 7

...A Script That Draws 9

..The Python Context 11

..The Graphics Library: Cairo Graphics & PyCairo 12

..Debugging Your Script 13

...Tips & Notes 15

...Composition Display Resolution & Aspect Ratio 15

...Known Bugs 15

..Support & Questions 16

..Appendix A: Installation Details 17

...Appendix B: A PyCairo Cheat Sheet 18

Omino Python for After Effects

2

Introduction
After Effects is my favorite application! Animations and visual effects and all manner of video can
be assembled in a paradigm that’s powerful, consistent, and fun. But… I cut my computer
graphics teeth, if you will, writing funny little programs on the Apple II, the Commodore 64, and
the Atari 400. The joy of typing a for loop in BASIC that draws a spirograph or a moiré or a field
of colored boxes is hard to beat.

Lots of people now like to write code to make art. In fact, writing code to make art has even
acquired a fancy name: “Generative Art”. And there are plenty of exciting apps that let you write
code to – that is, to produce generative art. Processing and Nodebox are two of them. And
many artists use Adobe Flash and ActionScript for this as well.

But I wanted to work within the After Effects platform.

Omino Python for After Effects is an effect plug-in that runs a Python script which can perform
drawing commands. Your script is executed once for each frame. Your script can draw something
different at each frame based on the time, the frame number, and changes to its parameters.
Why Python? I’d heard it was a neat language, and, technically, it lends itself very well to
embedding into a plug-in like this.

Host After Effects on Mac OS X only for now

Required App Verson After Effects CS 5

Omino Python Version 2.0, January 2012

Required OS Version Mac OS X 10.6.5

Useful Skills A familiarity with Python or other scripting language

Omino Python for After Effects

3

http://processing.org/
http://processing.org/
http://nodebox.net/
http://nodebox.net/

Installation

Omino Python is delivered by a standard Mac OS X installer which walks you through the several
steps. Adobe After Effects CS5 must be installed in the standard location.

You can copy the omino_suite folder to a later version of After Effects.

Omino Python for After Effects

4

Quick Start! Instant Gratification
For immediate demonstration, open up the example project, found installed right next to the
Omino plug-ins:

It has several compositions which use the example Python scripts in the adjacent ompy/ folder.

Omino Python for After Effects

5

The Workflow
Omino Python is used just like every other After Effects effect plug-in. You attach it to a layer in
your composition, and adjust its parameters. Unlike most other effects, Omino Python then
reads, and executes, an external script.

This is quite powerful and useful. It also adds a small maintenance burden. After Effects doesn’t
know about your script file. If you need to hand-off or archive a project which uses Omino
Python, you must make sure to include the relevant scripts, too. (And, as usual, any
nonstandard plug-ins, including Omino Python.)

Omino Python for After Effects

6

A Script
Let’s begin. Here is a simple script.

It’s shown here in TextEdit. Be sure to choose Format:Make Plain Text, and save as UTF-8, with
the exact name, ompy21.py, in a root-level folder named ompy. (Also, make sure that TextEdit
doesn’t change (c) to a © copyright symbol.) (And plain quotes for plain-text.)

Alternatively, you can use vi from the command-line.

Next, let’s apply that script to a 320 x 240 composition with a black solid, like so. We set the file
parameter to 21, so that it executes /ompy/ompy21.py.

Omino Python for After Effects

7

Here is a screen shot of the script running.

Look! The script has printed some information onto the black solid, ending with the result of our
Python print statement. If we preview the animation, the printed frame number will increment.

Omino Python for After Effects

8

A Script That Draws
Printing to the console is nice enough, but it’s hardly why we fired up After Effects, is it? Let’s
continue by drawing a rectangle.

Here is the script:

#
Draw a rectangle
file: /ompy/ompy13.py
#

def ompy_main(c):
 ctx = c.layer_out_context
 color = c.colors[0]
 center_point = c.points[0]
 size = c.floats[0]

 cX = center_point
 cY = center_point
 ctx.rectangle(cX - size / 2,cY - size / 2,size,size)
 ctx.set_source_rgb(color.r,color.g,color.b)
 ctx.fill()

Omino Python lets you name your scripts ompy00 to ompy99. This one is number 13. Every
Omino Python script must include a function named ompy_main. That’s what gets called each
frame. It gets one argument, c, which references a handful of other useful and interesting
values.

The first few lines of this script extract a drawing context for the output canvas (ctx), a color
parameter, a point parameter, and a float parameter.

Omino Python for After Effects

9

The latter half of the script draws a rectangle centered on the point.

Here is a screen shot with the running script.

Hopefully this is beginning to make sense. This screen shot shows the “params” parameter
group twirled open to reveal a bag of general purpose parameters. This script uses float 0 for
the rectangle size, point 0 for the rectangle location, and color 0 for the fill color. But you can
use any these parameters for whatever you need. Some paths and layers are available, too.
And, since this is After Effects, you can animate them.

Omino Python for After Effects

10

The Python Context
Your script’s method ompy_main(c) is called for each frame. Here’s the names of the
parameters and other fields you can access as fields of c in your script.

Field in c Range Description
c.floats[n] 0 to 7 A numeric value
c.points[n] 0 to 3 Instance of ompy_point. A point parameter. Each point has

fields .x and .y measured in pixels.
c.colors[n] 0 to 3 Instance of ompy_color. A color parameter. Each color has

fields .r, .g, and .b, ranging from 0.0 to 1.0.
c.paths[n] 0 or 1 Instance of ompy_path. Each has field .is_closed,

and .path_points, Bezier points. Use len(c.path[n].path_points)
to find the number of points. Each Bezier point has
fields .x_in, .y_in, .x, .y, .x_out, and .y_out, which describes each
mask point and its curve-handles.

c.layers[n] 0 to 3 Instances of ompy_layer. Each has field .surface (the Cairo
surface) and methods .get_pixel(x,y) and .draw
(ctx,x,y,scale,rotation).

c.layer_out_context The Cairo drawing context for the output bitmap
c.time 0 to dur The current layer time.
c.frame 0, 1, … The current frame number of the layer.
c.downsample_x,
c.downsample_y

The downsampling resolution of the display. Generally you can
ignore this; the drawing context will have an appropriate
transformation matrix already applied.

c.width, c.height The width and height of the current drawing context. This is the
full-resolution size, not the current display size.

c.script_path The absolute path to the current script, like “/ompy/ompy23.py”.

The Python module import path always includes the directory containing your script.

Omino Python for After Effects

11

The Graphics Library: Cairo Graphics & PyCairo
The graphics package used here is called Cairo, a powerful open source library. It’s pretty nifty!
Its features are bound to Python with PyCairo.

Here’s an introduction to some of the commands in PyCairo. All of these examples assume that
ctx = c.layer_out_context was run. The general approach is to build up a set of
shapes, and then draw them.

ctx.move_to(x,y) Without drawing, move the “current point” to pixel position (x,y)
ctx.line_to(x,y) Create a line segment between the current point and (x,y), and

add this segment to the “current path”. This doesn’t draw, yet!
ctx.set_line_width() Set the width for any lines that will soon be drawn.
ctx.set_source_rgb(r,g,b) Set the color for any lines or shapes or text that will soon be

drawn.
ctx.stroke() Stroke the current path, with the current width and color, and

clear the path.
ctx.rectangle(x,y,width,height) Add a rectangle to the path, with one corner at (x,y) and the

other at (x + width,y + height).
ctx.fill() Fill the current path with the current color, and clear the path.
ctx.stroke_preserve(),
ctx.fill_preserve()

Stroke or fill the current path, but leave it as is. You can further
modify it, or draw it again with different settings.

ctx.close_path() Add a segment from the current point to the first point.

The full PyCairo API is described at http://cairographics.org/documentation/pycairo/2/.

Omino Python for After Effects

12

http://cairographics.org/
http://cairographics.org/
http://cairographics.org/pycairo/
http://cairographics.org/pycairo/
http://cairographics.org/documentation/pycairo/2/
http://cairographics.org/documentation/pycairo/2/

Debugging Your Script
Since computers behave predictably, it is possible, always, to write perfect code, without bugs.
Alas, although computers are predictable, we are imperfect, and bugs are a fact of life.

Python has pretty good error messages, and Omino Python displays them for you. Here’s a
script with a syntax error.

def ompy_main(c):
 print("here w are.")
 What is this line in here for???

And here’s a screen shot of its execution.

The text in red shows the errors.

After you edit the file to fix the error (and introduce new ones) you can force After Effects to
retry your script by either changing any parameter on the effect, or pressing control-clear. (The
clear key is on the numeric keyboard, and not visible on laptop keyboards.)

Omino Python for After Effects

13

To help debug the functionality of your script -- apart from the syntax errors shown in red -- you
can print messages using the Python print statement.

But eventually, it seems likely that you’ll get your script working. At that point, the visual clutter
of the Welcome text and the error messages will just be in the way.

The “console” section of the parameters can be twirled open, and from here you can move the
two text imprints (the white one is stdout and shows print() output, the red one is stderr and
shows error messages) or disable them entirely.

Omino Python for After Effects

14

Tips & Notes

Composition Display Resolution & Aspect Ratio
In many cases, a pixel spans 1 unit of space, and is square... but not if the layer uses a non-
square aspect ratio (such as for certain video and film formats) or is displayed at reduced
resolution during preview or scrubbing.

Omino Python applies an appropriate transform to c.layer_out_context so that basic drawing
commands are well-behaved, regardless of pixel aspect ratio or reduced resolution. For
example, a 640x480 composition at half resolution only has 320x240 pixels. Omino Python will
set up the drawing context to reduce all actions by one half; a line from (100,100) to (400,300)
at width 5 will hit the pixels from (50,50) to (200,150), with width 2.5.

All is well, for basic drawing.

However, Cairo’s bitmap drawing is not affected by the drawing context’s transform. As you set
up the source pattern, you should scale it by c.downsample_y.

Known Bugs
A Python script can hang After Effects, if it enters an infinite loop. (We’re working on this.) The
only remedy for now is to Force Quit the application. Be sure to save often...

Omino Python for After Effects

15

Support & Questions
This product is still being developed. Please send any questions, suggestions, bug reports, and
other feedback to python@omino.com, subject should start with “plugin”.

And if you do something neat with it, let me know!

Happy Pixeling.

Omino Python for After Effects

16

mailto:poly@omino.com
mailto:poly@omino.com

Appendix A: Installation Details
The Omino Suite installer installs adds a library to Python 2.6. For most users, this should be
transparent and unobtrusive. Previous versions (<2.0) cluttered up /opt/local/lib and /usr/
local/lib with some stuff, we we don’t do that any more.

Python Cairo bindings /Library/Python/2.6/site-packages/cairo/
Omino Plug-ins /Applications/Adobe After Effects CS5/Plug-ins/omino_suite/
Documentation <Omino Plug-ins>/documentation
Examples <Omino Plug-ins>/examples
Python Scripts /ompy/ompy00.py

is provided as a starting point

Omino Python for After Effects

17

Appendix B: A PyCairo Cheat Sheet
Paths

ctx.rectangle(x,y,w,h)
ctx.move_to(x,y)
ctx.line_to(x,y)
ctx.curve_to(x1_out,y1_out,x2_in,y2_in,x2,y2)
ctx.arc(xc,yc,r,a1,a2)
ctx.close_path() # connect to first point
ctx.new_path() # clears it
ctx.new_sub_path() # (mostly: use before arc)
ctx.clip(), ctx.reset_clip() # shrinks clip, resets clip

Styles
ctx.set_source_rgb(r,g,b) # 0.0 to 1.0
ctx.set_source_rgba(r,g,b,a)
ctx.set_line_width(w)
ctx.set_line_cap(cairo.LINE_CAP_ BUTT, ROUND, SQUARE)
ctx.set_line_join(cairo.LINE_JOIN_ MITER, ROUND, BEVEL)

Drawing
ctx.fill(), ctx.fill_preserve()
ctx.stroke(), ctx.stroke_preserve()

Transforms
ctx.save(), ctx.restore() # push & pop the matrix & state
ctx.scale(sx,sy)
ctx.translate(tx,ty)
ctx.rotate(a)

Text
ctx.set_font_family(cairo.ToyFontFace(“courier”))
ctx.set_font_size(s)
ctx.show_text(“hello world”)

Omino Python for After Effects

18

